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A-I040 Wien, Austria 

Received 7 March I995 

Abstract. We present a novel approach to the calculation of magnetic anisotropies in crystals 
and in thin films. Our technique is based on self-consistent real-space recursion calculations 
on a tight-binding linear-muffin-tin-orbital (TE m)-Hubbard Hamiltonian including spin-orbit 
coupling and allowing for arbitrary orientations of the local spinquantization axes. It allows 
scanning of the magnetic energy continuously as a function of the orientation of the magnetic 
moment, and thus avoids the computational problems that plague other techniques. Applications 
are presented for bulk body-centred-cubic iron and for face-centred-cubic Fe monolayers on 
Cu(100) and Cu(1 I I )  substrates. We predict a perpendicular direction of the magnetic moment 
far FdCu(100) and in-plane orientation of lhe spins for FdCu(1ll). with anisotropy energies 
of lhe order of I to 2 meV atom-'. The technique is accurate enough for studying the weak 
in-plane anisotropies in FdCu(lI1) that are of the order of I weV atom-'. 

The unique magnetic properties of thin transition-metal films are currently at the centre 
of intense research interest. The main questions concern (a) the change of the magnetic 
moments relative to the bulk crystals and (b) the magnetic anisotropy of the layers, in 
particular the conditions for the preparation of films with a perpendicular orientation of 
the magnetic moment [ I ,  21. Recently, this effect has received much attention due to 
potential applications in magnetic perpendicular recording. Van Vleck has proposed that the 
magnetocrystalline anisotropy originates from the spin-orbit coupling, so it is a relativistic 
effect [3]. In cubic crystals, due to the symmetry of the energy surfaces, the first contribution 
to the magnetic anisotropy energy (MAE) is of fourth order. Due to the broken crystalline 
symmetry at the surface, lower orders in perturbation theory can contribute to the MAE as 
first pointed out by NBel [4]. 

Two different approaches to the calculation of the w have been developed. The 
first class of methods relies on ab initio spin-polarized total-energy calculations, including 
spin-orbit coupling either self-consistently within the scalar relativistic approximation [5 ] ,  
or as a final perturbation to a calculation neglecting spin-orbit coupling [6-9]. The 
disadvantage of this type of calculation is the extremely slow convergence of the Brillouin- 
zone sums. Wang er a1 have proposed a 'state-tracking procedure', using information 
on the change of the bandstructure with increasing spin-orbit interaction to extrapolate 
the Brillouin-zone integrals [9]. The second approach uses perturbation theory within a 
tight-binding framework, justified by the argument that the MAE is small compared with 
characteristic energies of the system (e.g. the bandwidth) [10-13]. The disadvantage of 
this technique is that the published calculations rely on parametrized non-self-consistent 
Hamiltonian-this allows the analysis of trends, but makes quantitative predictions for 
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selected systems difficult. A disadvantage common to both approaches is that they are 
restricted to collinear spin structures. There is experimental evidence that in certain systems 
(e.g. FCC FdCu(1M))) parallel and perpendicular components of the magnetization coexist 
for certain film thicknesses [14. 151. Theoretical arguments [I61 support the idea that this 
arises from the competition between ferro- and antiferromagnetic exchange interactions. 

In this paper we present a novel approach to the problem of magnetic anisotropy based 
on a real-space tight-binding @)-Hubbard formulation of the scalar-relativistic Hamiltonian 
including spin-orbit coupling and magnetic dipolar interactions, allowing for arbitary 
directions of the local spin-quantization axes. In a first step, we calculate self-consistently 
the magnitude and directions of the local magnetic moments-this also determines the easy 
axis of magnetization. In the second step, we can either apply a magnetic field perpendicular 
to the easy axis and calculate the MAE from the induced tilt of the moments as a function 
of the applied field, or orient the moment perpendicular to the easy axis and follow its 
relaxation into the preferred direction under the influence of the magnetic torque forces- 
this yields directly the MAE as a function of the angle relative to the easy axis. The new 
technique is tested by evaluating the MAE for bulk BCC Fe and the uniaxial and planar 
anisotropies of Fe monolayers on Cu(l00) and Cu(ll1) substrates. 

Our approach is based on the following model Hamiltonian 

H = Hbmd + H a c h  + Hm H d i p  (1) 

where Hbmd describes the nonmagnetic part of the bandstructure, H&, the magnetic 
exchange splitting, H ,  the spin-orbit coupling, and Hdp the dipolar interaction between 
the magnetic moments. The two-centre tight-binding Hamiltonian Hban,j and the 
exchange-interaction He, are derived from a self-consistent scalar-relativistic spin-polarized 
calculation of the bandstructure using the linear-muffin-tin-orbital (LMTO) method [17]. A 
canonical transformation of the paramagnetic part yields the TB LMTO Hamiltonian &and 
in the most localized basis [18]. The formulation of the exchange part is based on the 
assumption that the local exchange splitting Ail is proportional to the local spin-polarization 
1191, 

&I = 4Pil (2 )  
with an effective Stoner parameter 11 for the band with angular quantum number I, leading 
to a Hubbard-type exchange-Hamiltonian 

where 

is the local Pauli spin-matrix U ;  referring to the local quantization axis C i ,  rotated to a global 
spin axis (the Dg, are the rotation matrices at the site i, c/lm and q~,, the creation and 
annihilation operators for electrons, m and s stand for magnetic and spin quantum numbers). 
The ansntz (3) for the exchange part of the Hamiltonian is based on the observation that the 
proportionality ( 2 )  holds exactly, with a universal value 12 = (0.95 f 0.015) eV for all 3d 
and 4d metals ( l  = 2) ,  if the local exchange splitting Ail is defined in terms of the difference 
in the position of the centre of gravity of the spin-up and spin-down bands [ZO. 211 (for a 
general discussion of the mapping of the LSDA exchange-correlation potential on Hubbard- 
(or Stoner-)type models, see e.g. Anisimov et al [22]; here we only note that in our case 
the effective Stoner 2, has to be identified with Hund’s rule exchange). The universality 
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of the effective Stoner parameter I,  is also supported by experimental investigations using 
spin-polarized photoemission and inverse photoemission [24]. The spin-orbit coupling term 
is given by 

Hs =E& ai.& (5 ) 

where ti is the spin-orbit-coupling matrix element calculated with the self-consistent scalar 
relativistic wavefunctions. Hdip describes the standard magnetic dipole-interactions of the 
local moments pif. The same Hamiltonian, but excluding spin-orbit coupling and dipolar 
interactions has recently been used to describe successfully non-collinear spin-structures in 
amorphous magnets and substitutionally disordered intermetallic compounds [25]. 

The first step is the self-consistent calculation of the spin-polarized scalar-relativistic 
bandstructure for the bulk crystal or for a slab-model of the thin layer plus substrate, using 
the scalar-relativistic LMTO technique in the atomic sphere approximation (ASA). For the 
FdCu(I00) and FdCu( 11 1 )  layers considered in the present work, we used a slab with 11 
Cu layers and one Fe layer, separated by six vacuum layers. The interatomic distances 
correspond to the bulk lattice constants of Cu. For the lowest eight Cu layers, the LMTO 
potential parameters are fixed at the bulk values, those for the three Cu layers closest to 
the Cu/Fe interface and for the vacuum layers the potential parameters and charge densities 
are calculated self-consistently. For the (la0) slab we used a (A x f i )  surface cell with 
two atoms, for the (1 11) slab a (2 x 2) surface cell with four atoms. The use of a non- 
primitive surface cell is immaterial in the present context, but important for prospective 
application to systems with antiferromagnetic interactions within layers. The use of a larger 
surfacecell also leads to a less anisotropic cell and helps to reduce the effects of charge- 
sloshing during the iteration. The local spin-orbit coupling constant & is calculated in 
the final iteration 126, 71. For an LMTO with energy E ,  an energy-dependent spin-orbit 
coupling parameter ( ; ( E )  is defined by the expectation value of &(r). In our calculations 
we have used the spin-orbit coupling parameters calculated at the Fermi level. The self- 
consistent spin-dependent LMTO e A S A  Hamiltonian is decomposed into a paramagnetic part 
and the Hubbard-type exchange part defined in (3). A two-centre tight-binding Hamiltonian 
in the screened, most localized T'EI basis and the Lowdin orthonormal representation is 
constructed via the canonical transformation introduced by Andersen and Jepsen [18]. For 
the calculation of the screened structure constants of the TB-LMTO Hamiltonian, we consider 
an atomic environment of up to third-nearest neighbours. 

In the second step, we allow for an arbitrary orientation of the local spin-quantization 
axes C, and we calculate self-consistently the magnitude and orientation of the local magnetic 
moments. Starting with a random distribution of the local spin-quantization axes 5,. for 
each atomic site i the local spin-polarized partial densities of state T L ; , ~ ( E ) I I , ~  for spins 
parallel and perpendicular to Ci are calculated using the real-space recursion method [23]. 
Integrating the nii,(E)U,' up to the Fermi level defines the updated local magnetic moment 
pifm. In general, pa,,, will have transverse components with respect to Ci and the new local 
quantization axis Ci must be rotated into the direction of the moment. The calculation 
is iterated until the directions are stabilized and self-consistency according to (2) has been 
achieved. The main advantage of this technique is that in essence we calculate the magnetic 
torque force that rotates the moment into the direction of easy magnetization. 

The recursion calculation is performed for a larger cell. For bulk iron we use a supercell 
consisting of 8 x 8 x 8 BCC elementary cells and periodic boundary conditions. For the thin 
layers we use a supercell with periodic boundary conditions in two dimensions only. Each 
ZD slab consists of 25 layers: three layers of empty spheres to account for the spilling-out of 
charge into the vacuum, one Fe layer and 21 Cu layers (with the potential of the lowest 18 
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Cu layers fixed at the bulk values). Each (100) layer contains 288 atoms (a (12fix 12&) 
cell), each (111) layer 256 atoms (a (8 x 8) cell) (set up by repeating the (& x d), 
respectively (2 x 2) cell in the lateral directions). Nine recursion levels were computed for 
the s orbitals, 12 for the p, and 27 for the d orbitals, using the Bee-Pettifor terminator (271 
to get a smooth density of states. 

In the third step we calculate the MAE. This may be done in the following ways. (a) 
adding a Zeeman term representing a magnetic field perpendicular to the easy axis to the 
Hamiltonian and calculating self-consistently the rotation of the magnetization as a function 
of the applied field. (b) orienting the magnetization nearly perpendicular to the easy axis 
by applying a sufficiently strong magnetic field. Then the magnetic field is switched off 
and the magnetic moment is allowed to relax into the preferred direction. This allows us 
to monitor the energy as a function of the direction of the magnetic moment. In each 
case the total energy was calculated exactly, including the double-counting corrections for 
the self-consistent charge- and spin-densities (earlier calculations used the force theorem to 
approximate the total energy by the sum of the one-electron eigenvalues). The disadvantage 
of method (a) is that it allows calculation of the MAE only at discrete orientations of 
the magnetization and that one has to subtract the effect of the field-induced polarization. 
Method (b) allows scanning of the variation of the MAE continuously. The disadvantage 
is that after switching off the initial magnetic field, the Hamiltonian is not completely 
self-consistent. Self-consistency is recovered only during the relaxation process. Both 
techniques lead to convergent results, except for small differences in the initial stage of the 
scanning process. This is shown in figure 1 for the Fe/Cu(100) and Fe/Cu( 11 1) monolayers. 
With the 'scanning' approach (b), the variation of the energy shows small discontinuities 
at certain angles. arising from the changes in the bandstructure upon a re-orientation of the 
magnetic moments. These are precisely the effects that make the total-energy calculation 
in k space so cumbersome. In our technique, they are small and well controlled, since 
we follow these changes in the bandstructure continuously. The overall form of the MAE 
is well described by the E ( $ )  = KO + K~,cos2t9  law for uniaxial anisotropy. In some 
respects, our approach is similar in spirit to the 'state-tracking' strategy of Freeman er al 
[8, 91. However, Freeman et al study the behaviour of the bandstructure as a function of 
the spin-rbit coupling constant 5 at a few discrete values of the orientation of the moment, 
whereas we follow the change of the bandstructure as a function of the angle. Evidently 
this is much easier in our real-space approach than within a k-space formalism. We also 
note that our technique is parameter-free: all quantitities determining the Hamiltonian (1) 
are derived from the ab initio LMTO calculation. 

Our technique can also be used to calculate the very small anisotropies in the plane 
perpendicular to the easy axis. This is performed most easily in the 'scanning' mode (see 
below). 

As a first test of the accuracy of our technique, we have calculated the magnetocrystalline 
anisotropy of crystalline BCC Fe. At the experimental lattice constant, we calculate a 
magnetic moment of p = 2.24 pB oriented along the [I001 direction (the easy axis). 
For the MAE we obtain A E  = E[100] - E[111] = -0.65 peV atom-'. Our results 
compare well with the calculations of Daaldemp et nl who found p = 2.25 pg and 
A E  = -0.4 PeV atom-' on the basis of an LMTO calculation using a set of - 500000 k 
vectors for Brillouin-zone integrations 171. Previous calculations of the MAE of BCC Fe gave 
A E  = 1-7.4 peV atom-' (Fritsche et al [ % I ) ;  the difference probably has to be attributed 
to too coarse a Brillouin-zone mesh. The experimental MAE is A E  = -1.3 peV atom-', 
i.e. stili slightly higher than our result [29]. 

For the FdCu(100) monolayers we calculate spin-orbit coupling parameters t t ( E p )  = 
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Figure 1. Variation of the total magnetic enelgy as a function of the angle 19 of the magnedzation 
relative to the surface normal: (a) Fe monolayer on Cu(IOO), (b) Fe monolayer on Cu(1ll). 
Full line: calculated using methad (b); relaxing the direction of the magnetic moment to the 
easy direction, stars: calculated for discrete orientations of the magnetic moments induced by a 
field perpendicular to lhe easy direction (method (b)), broken lines: cos2 $-fit Cf. text. 

59 meV and g l ( E ~ )  = 47 meV for the spin-up and spin-down bands at the Fermi level. 
The coupling constants evaluated at the band centres are about 10% larger. These values 
are almost equal to the coupling constants calculated by Daalderoop et uf [7] for bulk 
BCC Fe, The spin-orbit coupling constant for the Cu sites is tt.'(Ep) = 108 meV. For 
FeKu(100) our calculations predict an easy axis oriented along the surface normal. The 
magnetic moment in the Fe-monolayer is enhanced to p = 2.7113 pg for perpendicular 
orientation. the moments changes only very little for in-plane orientation (p = 2.7144 pB). 
The magnetic polarization of the Fe-layer induces very small moments in the first vacuum 
layer (pvac = -0.02 p~g) and in the first and second Cu layers from the interface 
(@.CUI = 0.007 p ~ .  pcUz = -0.012 p~g)  via the covalent coupling to the Fe spin-up and 
spin-down bands. The anisotropy constant (equal to the MAE for in-plane to perpendicular 
orientation) is K ~ $  = EL - Ell = -1.87 meV atom-', calculated via a fit of a cos2tP-fit 
to the results obtained using both techniques. These values are three orders of magnitude 
larger than the bulk MAE. Varying the spin-xbit coupling parameter ( by & 10% introduces 
changes in the MAE of the order o f f  5%. 

For the FdCu(l11) monolayers, the spin-dependent difference in the spin-orbit coupling 
parameters is slightly larger: ( T  = 60 meV, (J = 49 meV. The enhancement of the 
magnetic moment in the Fe layer compared to the bulk value is smaller, p = 2.561 pB, 
almost independent of the direction of the moment. Again small moments are induced in 
the vacuum and Cu layers (pmc = -0.005 PE. pcUi = 0.010 PB, pcuz = -0.002 PB). 
For this orientation of the substrate, our calculation predicts an in-plane orientation of the 
magnetic moment, with an MAE that is of the same order of magnitude as for the Cu(100) 
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Feure 2. Variarion of the low magnetic energy in FdCu(l1 I )  as a function of the angle 'p 

describing the onenlalion of the magnetization in the surface-plme ('p = 0 corresponds to one 
of lhhe basis vectors of the hexagonal surface cells). 

substrate, K- = E l  - Ell = ~ 1.52 meV atom-'. Here again, we have checked that 
this result is stable against variations of the parameters, especially the spin-orbit coupling 
constant. We find that ~ ( E F )  has to be increased to three times the value resulting from the 
LMTO calculations to switch the easy axis into the perpendicular direction. 

The prediction of perpendicular magnetization for Fe/Cu( 100) and in-plane 
magnetization for FelCu(ll1) is in agreement with experiment [ 14, 151. However, 
quantitative results for the MAE in the monolayer-limit are not available due to limitations 
arising from insular growth, interdiffusion or surface-segregation of Cu etc. The magnetic 
moments for FelCu(100) are in good agreement with the result of Bliigel [30], = 2.8.5ps. 
The MAE for free-standing transition-metal mono- and multilayers have been calculated by 
Bruno [ 1 I], Cinal et nl [13], and Pick and Dreyssi [ 121 using parametrized tight-binding 
Hamiltonians. The results in the monolayer case are of the same order of magnitude as 
our predictions, but depend crucially on adjustable parameters such as the crystal-field and 
spin-orbit-coupling parameters, bandfilling, etc, so that a quantitative comparison is not 
meaningful. 

Our technique is also sufficiently accurate for studying the much smaller in-plane 
anisotropies for an easy axis lying in the surface plane. This may be achieved by orienting 
the moments in an off-symmetry direction in the plane and relaxing it into the easy direction. 
An example is shown in figure 2 for Fe/Cu( 11 1). Due to the exceedingly small MAE, 
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the scans of the magnetic energy become more noisy, but it is still possible to follow the 
angular dependence and to deduce the anisotropy constants. The MAE for magnetic moments 
pointing into the direction of the nearest-neighbour atom and pointing into the direction of 
the next-nearest-neighbour atoms is A E  = 0.40 peV atom-', i.e., even smaller than the 
bulk MAE. 

In summary, we have presented a novel technique for calculating uniaxial and planar 
anisotropies in bulk and thin-film magnetic system. Our approach exploits essentially 
the magnetic-torque force restoring the magnetic moment to the easy axis. By following 
continuously the changes introduced in the electronic structure as a function of the direction 
of the magnetization, it avoids the cumbersome computational problems that plague other 
techniques based on total-energy calculations. One of the particular advantages of our 
technique is that it is not restricted to collinear orientations of the magnetic moments. 
This will allow the investigation of systems with competing ferro- and antiferromagnetic 
interaction and the study of the regime where a switching of the easy axis from perpendicular 
to in-plane orientation occurs. ?hex studies are now in progress. 

This work has been supported by the Austrian Ministry of Science and Research 
(Bundesministerium f i r  Wissenschaft und Forschnng) within the research project 
'Magnetism on the nanometer scale' (Project No 45.378/2-N/6/94). 
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